Issue 44, 2011

Functional supramolecular assemblies derived from dendritic building blocks

Abstract

Control of the structure and function of self-assembled materials has been a significant issue in many areas of nanoscience. Among many different types of building blocks, dendritic ones have shown interesting self-assembly behaviour and functional performances due to their unique shape and multiple functionalities. Dendritic building blocks exhibit unique self-assembly behaviour in diverse environments such as aqueous and organic solutions, solid–liquid interfaces, and thermotropic solid conditions. Tuning the balance between hydrophilic and hydrophobic parts, as well as the external conditions for self-assembly, provides unique opportunities for control of supramolecular architectures. Furthermore, the introduction of suitable functional moieties into dendrons enables us to control self-assembly characteristics, allowing nanostructures to exhibit smart performances for electronic or biological applications. The self-assembly characteristics of amphiphilic dendrons under various conditions were investigated to elucidate how dendrons can assemble into nanoscopic structures and how these nanoassemblies exhibit unique properties. Well-defined nanostructures derived from self-assembly of dendrons provide an efficient approach for exhibition of unique functions at the nanoscale. This feature article describes the unique self-assembly characteristics of various types of dendritic building blocks and their potential applications as advanced materials.

Graphical abstract: Functional supramolecular assemblies derived from dendritic building blocks

Article information

Article type
Feature Article
Submitted
17 Mar 2011
Accepted
01 Jul 2011
First published
25 Jul 2011

Chem. Commun., 2011,47, 12042-12056

Functional supramolecular assemblies derived from dendritic building blocks

C. Park, J. Lee and C. Kim, Chem. Commun., 2011, 47, 12042 DOI: 10.1039/C1CC11531F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements