Issue 2, 2011

Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement

Abstract

By employing an idealized model of a polymer network and filler, we have investigated the stress-strain behavior by tuning the filler loading and polymer–filler interaction in a broad range. The simulated results indicate that there actually exists an optimal filler volume fraction (between 23% and 32%) for elastomer reinforcement with attractive polymer–filler interaction. To realize this reinforcement, the rubber–filler interaction should be slightly stronger than the rubber–rubber interaction, while excessive chemical couplings are harmful to mechanical properties. Meanwhile, our simulated results qualitatively reproduce the experimental data of Bokobza. By introducing enough chemical coupling between the rubber and the filler, an upturn in the modulus at large deformation is observed in the Mooney-Rivlin plot, attributed to the limited chain extensibility at large deformation. Particularly, the filler dispersion state in the polymer networks is also characterized in detail. It is the first demonstration via simulation that the reinforcement mechanism stems from the nanoparticle-induced chain alignment and orientation, as well as the limited extensibility of chain bridges formed between neighboring nanoparticles at large deformation. The former is influenced by the filler amount, filler size and filler–rubber interaction, and the latter becomes more obvious by strengthening the physical and chemical interactions between the rubber and the filler. Remarkably, the reason for no obvious reinforcing effect in filled glassy or semi-crystalline matrices is also demonstrated. It is expected that this preliminary study of nanoparticle-induced mechanical reinforcement will provide a solid basis for further insightful investigation of polymer reinforcement.

Graphical abstract: Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2010
Accepted
07 Sep 2010
First published
05 Nov 2010

Phys. Chem. Chem. Phys., 2011,13, 518-529

Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement

J. Liu, S. Wu, L. Zhang, W. Wang and D. Cao, Phys. Chem. Chem. Phys., 2011, 13, 518 DOI: 10.1039/C0CP00297F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements