Issue 2, 2011

On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C60fullerene with a rare gas atom

Abstract

Selected points on the potential energy surface for the complexes Rg@C60 (Rg = He, Ne, Ar, Kr) are calculated with various theoretical methods, like symmetry-adapted perturbation theory with monomers described by density functional theory (DFT-SAPT), supermolecular Møller–Plesset theory truncated on the second order (MP2), spin-component-scaled MP2 (SCS-MP2), supermolecular density functional theory with empirical dispersion correction (DFT+Disp), and the recently developed MP2C method that improves the MP2 method for long-range electron correlation effects. A stabilization of the endohedral complex is predicted by all methods, but the depth of the potential energy well is overestimated by the DFT+Disp and MP2 approaches. On the other hand, the MP2C model agrees well with DFT-SAPT, which serves as the reference. The performance of SCS-MP2 is mixed: it produces too low interaction energies for the two heavier guests, while its accuracy for He@C60 and Ne@C60 is similar to that of MP2C. Fitting formulas for the main interaction energy components, i.e. the dispersion and first-order repulsion energies are proposed, which are applicable for both endo- and exohedral cases. For all examined methods density fitting is used to evaluate two-electron repulsion integrals, which is indispensable to allow studies of noncovalent complexes of this size. It has been found that density-fitting auxiliary basis sets cannot be used in a black-box fashion for the calculation of the first-order SAPT electrostatic energy, and that the quality of these basis sets should be always carefully examined in order to avoid an unphysical long-range behavior.

Graphical abstract: On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C60 fullerene with a rare gas atom

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2010
Accepted
28 Sep 2010
First published
03 Nov 2010

Phys. Chem. Chem. Phys., 2011,13, 732-743

On the accuracy of DFT-SAPT, MP2, SCS-MP2, MP2C, and DFT+Disp methods for the interaction energies of endohedral complexes of the C60 fullerene with a rare gas atom

A. Hesselmann and T. Korona, Phys. Chem. Chem. Phys., 2011, 13, 732 DOI: 10.1039/C0CP00968G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements