Issue 2, 2011

119Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores

Abstract

The local structure and cation disorder in Y2Ti2−xSnxO7 pyrochlores, materials proposed for the encapsulation of lanthanide- and actinide-bearing radioactive waste, is studied using 119Sn (I = 1/2) NMR spectroscopy. NMR provides an excellent probe of disorder, as it is sensitive to the atomic scale environment without the need for any long-range periodicity. However, the complex and overlapping spectral resonances that often result can be difficult to interpret. Here, we demonstrate how 119Sn DFT calculations can be used to aid the spectral interpretation and assignment, confirming that Sn occupies only the six-coordinate pyrochlore B site, and that the Sn chemical shift is sensitive to the number of Sn/Ti on the neighbouring B sites. Although distinct resonances are resolved experimentally when the Ti content is low, there is significant spectral overlap for Ti-rich compositions. We establish that this is a result of two competing contributions to the Sn chemical shift; an upfield shift resulting from the incorporation of the more polarizing Ti4+ cation onto the neighbouring B sites, and a concomitant downfield shift arising from the decrease in unit cell size. Despite the considerably easier spectral acquisition, the lower resolution in the 119Sn spectra hinders the extraction of the detailed structural information previously obtained using 89Y NMR. However, the spectra we obtain are consistent with a random distribution of Sn/Ti on the pyrochlore B sites. Finally, we consider whether an equilibrium structure has been achieved by investigating materials that have been annealed for different durations.

Graphical abstract: 119Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores

Article information

Article type
Paper
Submitted
22 Jul 2010
Accepted
01 Oct 2010
First published
29 Oct 2010

Phys. Chem. Chem. Phys., 2011,13, 488-497

119Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores

M. R. Mitchell, S. W. Reader, K. E. Johnston, C. J. Pickard, K. R. Whittle and S. E. Ashbrook, Phys. Chem. Chem. Phys., 2011, 13, 488 DOI: 10.1039/C0CP01274B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements