Issue 20, 2011

The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory

Abstract

We have studied the magnetic structure of the high symmetry vanadyl pyrophosphate ((VO)2P2O7, VOPO), focusing on the spin exchange couplings, using density functional theory (B3LYP) with the full three-dimensional periodicity. VOPO involves four distinct spin couplings: two larger couplings exist along the chain direction (a-axis), which we predict to be antiferromagnetic, JOPO = −156.8 K and JO = −68.6 K, and two weaker couplings appear along the c (between two layers) and b directions (between two chains in the same layer), which we calculate to be ferromagnetic, Jlayer = 19.2 K and Jchain = 2.8 K. Based on the local density of states and the response of spin couplings to varying the cell parameter a, we found that JOPO originates from a super-exchange interaction through the bridging –O–P–O– unit. In contrast, JO results from a direct overlap of 3dx2y2 orbitals on two vanadium atoms in the same V2O8 motif, making it very sensitive to structural fluctuations. Based on the variations in V–O bond length as a function of strain along a, we found that the V–O bonds of V–(OPO)2–V are covalent and rigid, whereas the bonds of V–(O)2–V are fragile and dative. These distinctions suggest that compression along the a-axis would have a dramatic impact on JO, changing the magnetic structure and spin gap of VOPO. This result also suggests that assuming JO to be a constant over the range of 2–300 K whilst fitting couplings to the experimental magnetic susceptibility is an invalid method. Regarding its role as a catalyst, the bonding pattern suggests that O2 can penetrate beyond the top layers of the VOPO surface, converting multiple V atoms from the +4 to +5 oxidation state, which seems crucial to explain the deep oxidation of n-butane to maleic anhydride.

Graphical abstract: The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2010
Accepted
13 Mar 2011
First published
18 Apr 2011

Phys. Chem. Chem. Phys., 2011,13, 9831-9838

The magnetic and electronic structure of vanadyl pyrophosphate from density functional theory

M. Cheng, R. J. Nielsen, J. Tahir-Kheli and W. A. Goddard III, Phys. Chem. Chem. Phys., 2011, 13, 9831 DOI: 10.1039/C0CP02777D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements