Issue 9, 2011

Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface

Abstract

Further understanding of the electronic structure at the ZnS/Cu(In,Ga)Se2 interface is necessary to enhance the electron injection across the interface in Cu(In,Ga)Se2 solar cells. The valence band structure and shallow core levels were investigated by ultraviolet photoelectron spectroscopy depth profile analysis with He II line excitation. ZnS film was grown by a chemical bath deposition on a Cu(In,Ga)Se2 absorber deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The discontinuity of 2.0 eV in the valence band edge at the ZnS/Cu(In0.7Ga0.3)Se2 interface was directly determined. This type of valence band offset yields a spike conduction band alignment of 0.25 eV. The positions of the VBM and the Zn 3d core-level emission of the buffer underwent the substantial shifts of 0.36 eV and 0.64 eV to a lower binding energy levels during the etching process. The shifts are ascribed to the contribution of the band bending in the ZnS buffer layer and its graded chemical composition. This study is the first to determine the small conduction band offset at the interface formed by the chemical bath deposited ZnS layer and the Cu(In0.7Ga0.3)Se2 absorber. Our results also provide information toward the design optimization of the optoelectronic properties of the ZnS/Cu(In0.7Ga0.3)Se2 interface. To enhance the electron injection from Cu(In0.7Ga0.3)Se2 absorber to ZnS layer further lowering of the energy barrier is required. For this purpose, the bandgap of ZnS should be reduced by controlling the crystal structure and composition or its Fermi level should be upward shifted by appropriate doping.

Graphical abstract: Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface

Supplementary files

Article information

Article type
Paper
Submitted
14 Mar 2011
Accepted
26 May 2011
First published
12 Jul 2011

Energy Environ. Sci., 2011,4, 3487-3493

Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface

L. Larina, D. Shin, J. H. Kim and B. T. Ahn, Energy Environ. Sci., 2011, 4, 3487 DOI: 10.1039/C1EE01292D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements