Issue 10, 2011

CO2 desorption using high-pressure bipolar membraneelectrodialysis

Abstract

The electrodialysis of gas evolving solutions may prove to be an important technology for many gas-separation applications, including CO2 and SO2 separation from mixed-gas streams. Progress on the use of electrodialysis for gas separation has been hampered by the increased resistance caused by gas bubbles on the surface of the electrodialysis membranes. This effect reduces the effective membrane surface area, causing increased voltages and reduced membrane lifetimes due to localized “hot spots” of high current density. To overcome this problem, we designed, constructed, and tested a bipolar membrane electrodialysis (BPMED) system designed to operate up to pressures as high as 20 atm. For given process conditions, operation at a sufficiently high pressure keeps all gas dissolved in solution, eliminating the problems caused by gas bubbles on the membrane surfaces. We performed CO2 desorption from aqueous bicarbonate solutions, demonstrating that high pressures decrease the resistance, voltage, and energy of the desorption process. Our results demonstrate that at high current densities (139 mA cm−2), the CO2 desorption energy from aqueous bicarbonate solutions under high-pressure operation can be 29% lower than under ambient-pressure operation.

Graphical abstract: CO2 desorption using high-pressure bipolar membrane electrodialysis

Article information

Article type
Paper
Submitted
21 Mar 2011
Accepted
17 Jun 2011
First published
08 Aug 2011

Energy Environ. Sci., 2011,4, 4031-4037

CO2 desorption using high-pressure bipolar membrane electrodialysis

M. D. Eisaman, L. Alvarado, D. Larner, P. Wang and K. A. Littau, Energy Environ. Sci., 2011, 4, 4031 DOI: 10.1039/C1EE01336J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements