Issue 8, 2011

The discharge rate capability of rechargeable Li–O2 batteries

Abstract

The O2electrode in Li–O2cells was shown to exhibit gravimetric energy densities (considering the total weight of oxygen electrode in the discharged state) four times that of LiCoO2 with comparable gravimetric power. The discharge rate capability of Au-catalyzed Vulcan carbon and pure Vulcan carbon (VC) as the O2electrode was studied in the range of 100 to 2000 mA gcarbon−1. The discharge voltage and capacity of the Li−O2 cells were shown to decrease with increasing rates. Unlike propylene carbonate based electrolytes, the rate capability of Li−O2 cells tested with 1,2-dimethoxyethane was found not to be limited by oxygen transport in the electrolyte. X-Ray diffraction (XRD) showed lithium peroxide as the discharge product and no evidence of Li2CO3 and LiOH was found. It is hypothesized that higher discharge voltages of cells with Au/C than VC at low rates could have originated from higher oxygen reduction activity of Au/C. At high rates, higher discharge voltages with Au/C than VC could be attributed to faster lithium transport in nonstoichiometric and defective lithium peroxide formed upon discharge, which is supported by XRD and X-ray absorption near edge structure O and Li K edge data.

Graphical abstract: The discharge rate capability of rechargeable Li–O2 batteries

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2011
Accepted
24 May 2011
First published
04 Jul 2011

Energy Environ. Sci., 2011,4, 2999-3007

The discharge rate capability of rechargeable Li–O2 batteries

Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin and Y. Shao-Horn, Energy Environ. Sci., 2011, 4, 2999 DOI: 10.1039/C1EE01500A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements