Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride
Abstract
The complexity of the valence band structure in p-type PbTe has been shown to enable a significant enhancement of the average thermoelectric figure of merit (zT) when heavily doped with Na. It has also been shown that when PbTe is nanostructured with large nanometer sized Ag2Te precipitates there is an enhancement of zT due to phonon scattering at the interfaces. The enhancement in zT resulting from these two mechanisms is of similar magnitude but, in principle, decoupled from one another. This work experimentally demonstrates a successful combination of the complexity in the valence band structure with the addition of nanostructuring to create a high performance thermoelectric material. These effects lead to a high zT over a wide temperature range with peak zT > 1.5 at T > 650 K in Na-doped PbTe/Ag2Te. This high average zT produces 30% higher efficiency (300–750 K) than pure Na-doped PbTe because of the
- This article is part of the themed collection: Thermoelectrics