Issue 11, 2011

Interfacial capacitance of single layer graphene

Abstract

The interfacial capacitance of large area, single layer graphene was directly measured with electrolyte accessing both sides of the graphene sheet. PMMA and photoresist patterns were used as supports to suspend the CVD grown graphene in electrolyte during electrochemical testing. Both one and two sides of single layer graphene films were measured and compared. The results show that the area normalized charge that can be stored simultaneously on both sides is significantly lower than could be stored on just one side of single layer graphene, consistent with charge storage having a quantum capacitance component. These measurements are also consistent with the specific capacitance of graphene materials as previously measured in supercapacitor cells and provide a basis for the further understanding and development of graphene based materials for electrical energy storage.

Graphical abstract: Interfacial capacitance of single layer graphene

Article information

Article type
Paper
Submitted
09 Aug 2011
Accepted
01 Sep 2011
First published
27 Sep 2011

Energy Environ. Sci., 2011,4, 4685-4689

Interfacial capacitance of single layer graphene

M. D. Stoller, C. W. Magnuson, Y. Zhu, S. Murali, J. W. Suk, R. Piner and R. S. Ruoff, Energy Environ. Sci., 2011, 4, 4685 DOI: 10.1039/C1EE02322E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements