Issue 3, 2011

Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

Abstract

We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

Graphical abstract: Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

Article information

Article type
Communication
Submitted
21 Oct 2010
Accepted
22 Nov 2010
First published
21 Dec 2010

Nanoscale, 2011,3, 919-924

Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

S. M. Sagnella, X. Gong, M. J. Moghaddam, C. E. Conn, K. Kimpton, L. J. Waddington, I. Krodkiewska and C. J. Drummond, Nanoscale, 2011, 3, 919 DOI: 10.1039/C0NR00781A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements