Issue 6, 2011

Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system

Abstract

Continuous synthesis of silver nanoparticles based on a polyol process was conducted using a microwave-assisted flow reactor installed in a cylindrical resonance cavity. Silver nitrate (AgNO3) and poly(N-vinylpyrrolidone) (PVP) dissolved in ethylene glycol were used respectively as a silver metal precursor and as a capping agent of nanoparticles. Ethylene glycol worked as the solvent and simultaneously as the reductant. Silver nanoparticles of narrow size distributions were synthesized steadily for 5 h, maintaining almost constant yield (>93%) and quality. The reaction was achieved within 2.8 s of residence time, although nanoparticles were not formed under this flow rate by conventional heating. A narrower particle size distribution was realized by the increased flow rate of the reaction solution. Nanoparticles of 9.8 nm average size with a standard deviation of 0.9 nm were synthesized at the rate of 100 ml h−l.

Graphical abstract: Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system

Article information

Article type
Paper
Submitted
23 Feb 2011
Accepted
31 Mar 2011
First published
09 May 2011

Nanoscale, 2011,3, 2621-2626

Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system

M. Nishioka, M. Miyakawa, H. Kataoka, H. Koda, K. Sato and T. M. Suzuki, Nanoscale, 2011, 3, 2621 DOI: 10.1039/C1NR10199D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements