Issue 10, 2011

Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell

Abstract

The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(L-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found.

Graphical abstract: Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2011
Accepted
12 Aug 2011
First published
20 Sep 2011

Nanoscale, 2011,3, 4352-4358

Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(L-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell

T. Fujigaya, Y. Yamamoto, A. Kano, A. Maruyama and N. Nakashima, Nanoscale, 2011, 3, 4352 DOI: 10.1039/C1NR10635J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements