Issue 9, 2011

Photoswitchable rotaxanes on gold nanoparticles

Abstract

We studied rotaxanes that consisted of a molecular axle, with a photoactive 9-Aryl-9-methoxy-acridane moiety at one end, and a tetracationic ring of cyclobis(paraquat-p-phenylene) (CBQT4+). The aim of the study was to deposit the axle ends onto gold nanoparticles (AuNPs). First, we introduced thioctic acid into the axle molecules. Then, rotaxanes were deposited on AuNPs by two methods: 1) Pseudorotaxanes were deposited on the gold surface by forming rotaxanes with the AuNP as a terminator to prevent unthreading of the ring structure; and 2) a chain containing the thioctic ester was introduced into a complete rotaxane, and then it was deposited on the AuNP with the aid of an exchange process. The photoheterolysis of the acridane unit resulted in formation of the corresponding acridinium methoxide; this, in turn, could thermally react to return to the acridane moiety. Due to the creation of a positive charge, the ring moved from the acridane station to a second, evasive station within the axle. This switching cycle could also take place when deposited on the gold surface. However, on the gold surface, the ring movement associated with the switching process was unidirectional.

Graphical abstract: Photoswitchable rotaxanes on gold nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2011
Accepted
28 Feb 2011
First published
01 Mar 2011

Org. Biomol. Chem., 2011,9, 3549-3559

Photoswitchable rotaxanes on gold nanoparticles

Y. Duo, S. Jacob and W. Abraham, Org. Biomol. Chem., 2011, 9, 3549 DOI: 10.1039/C1OB05128H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements