Issue 20, 2011

Resolving natural productepimer spectra by matrix-assisted DOSY

Abstract

High resolution diffusion-ordered NMR spectroscopy allows the separation of signals from different species based on their diffusion coefficients. In general this requires that the NMR spectra of the components do not have overlapping signals, and that the diffusion coefficients are significantly different. Modifying the solvent matrix in which a sample is dissolved can change the diffusion coefficients observed, allowing resolution (“matrix-assisted DOSY”). We show here that dissolving the two naturally-occurring epimers of naringin in an aqueous solution of β-cyclodextrin causes both shift and diffusion changes, allowing the signals of the epimers to be distinguished. Chiral matrix-assisted DOSY has the potential to allow simple resolution and assignment of the spectra of epimers and enantiomers, without the need for derivatisation or for titration with a shift reagent.

Graphical abstract: Resolving natural productepimer spectra by matrix-assisted DOSY

Article information

Article type
Paper
Submitted
06 Jul 2011
Accepted
19 Jul 2011
First published
26 Aug 2011

Org. Biomol. Chem., 2011,9, 7062-7064

Resolving natural productepimer spectra by matrix-assisted DOSY

R. W. Adams, J. A. Aguilar, J. Cassani, G. A. Morris and M. Nilsson, Org. Biomol. Chem., 2011, 9, 7062 DOI: 10.1039/C1OB06097J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements