Issue 10, 2011

Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites

Abstract

Mesoporous core–shell composites with large-pore silica shells are highly desired for a broad spectrum of applications. We report an ultra-dilute liquid-phase coating strategy in an acidic medium for controllable synthesis of uniform micro/mesoporous core–shell composites zeolite@SBA-15 comprising zeolite cores and mesoporous silica SBA-15 shells using triblock compolymer Plunoric P123 as a template. Structural characterizations show that the core–shell composites possess tunable specific surface areas (115–228 m2 g−1), large pores (∼7.0 nm in diameter) with plenty of mesotunnels (∼3.0 nm) from silica shells, original crystalline zeolite frameworks, and opened junctions between micropores and mesopores. The silica shells have ordered 2-D hexagonal mesopore channels, most of which are annularly parallel (fingerprint-like arrangement) to the anisotropic zeolite faces. The shell-thickness is crystal face-dependent, which could be facilely tuned in the range of 30–45 and 40–120 nm on a pinacoids/dome faces and b pinacoids of a zeolite single-crystal, respectively. Moreover, the synthesis parameters such as MgSO4 additive, stirring rate, acidity, temperature and reaction time show great influences on the formation of uniform core–shell composites. Post-hydrothermal treatment at 100 °C has been for the first time adopted to improve mesostructural regularity of the core–shell composites. A scheme regarding surface-induced micellization and hydrothermal rearrangement of mesostructured silica shells in the coating process is proposed to illustrate the formation of core–shell composites. The core–shell composite HZSM-5@SBA-15 (HZ@S15) was employed as a catalyst for methanol to propylene (MTP) conversion, and shows excellent catalytic performance with high methanol conversion (∼98%) and propylene to ethylene (P/E) ratio (∼10.7) as well as propylene selectivity (∼39%).

Graphical abstract: Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Apr 2011
Accepted
23 Jun 2011
First published
28 Jul 2011

Chem. Sci., 2011,2, 2006-2016

Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites

X. Qian, J. Du, B. Li, M. Si, Y. Yang, Y. Hu, G. Niu, Y. Zhang, H. Xu, B. Tu, Y. Tang and D. Zhao, Chem. Sci., 2011, 2, 2006 DOI: 10.1039/C1SC00250C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements