Issue 10, 2011

Close packing density and fracture strength of adsorbed polydisperse particle layers

Abstract

The close packing density of log-normal and bimodal distributed, surface-adsorbed particles or discs in 2D is studied by numerical simulation. For small spread in particle size, the system orders in a polycrystalline structure of hexagonal domains. The domain size and the packing density both decrease as the spread in particle size is increased up to 10.5 ± 0.5%. From this point onwards the system becomes amorphous, and the close packing density increases again with spread in particle size. We argue that the polycrystalline and amorphous regions are separated by a Kosterlitz–Thouless-type phase transition. In the amorphous region we find the close packing density to vary proportional to the logarithm of the friction factor, or cooling rate. We also studied the fracture behaviour of surface layers of sintered particles. Fracture strength increases with spread in particle size, but the brittleness of the layers shows a minimum at the polycrystalline–amorphous transition. We further show that mixing distributions of big and small particles generally leads to weaker and more brittle layers, even though the close packing density is higher than for either of the particle types. We point out applications to foam stability by the Pickering mechanism.

Graphical abstract: Close packing density and fracture strength of adsorbed polydisperse particle layers

Article information

Article type
Paper
Submitted
25 Aug 2010
Accepted
02 Dec 2010
First published
12 Jan 2011

Soft Matter, 2011,7, 4750-4761

Close packing density and fracture strength of adsorbed polydisperse particle layers

R. D. Groot and S. D. Stoyanov, Soft Matter, 2011, 7, 4750 DOI: 10.1039/C0SM00859A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements