Issue 10, 2012

Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay

Abstract

The proper orientation and lateral spacing of antibody molecules are a crucial element for an on-chip immunoassay in which the antibody or its antigen-binding fragments are immobilized on a solid surface. We covalently immobilized a modified protein G (Cys-protein G: protein G with only an N-terminal cysteine) on a dendron-coated surface to control its orientation and lateral spacing simultaneously. The cysteine-specific immobilization of Cys-protein G through the N-terminal cysteine resulted in 2.2-fold higher binding efficiency of Cys-protein G to IgG2a capture antibody than its random immobilization via lysine residues. The lateral spacing of 3.2 nm due to the surface modification with the 9-acid dendron molecule contributed to a 1.5-fold increase in the antibody-binding ability of Cys-protein G. Topographic images of atomic force microscopy exhibited a uniform coverage of Cys-protein G molecules immobilized on the thiol-reactive 9-acid dendron surface and homogeneous distribution of antibody bound to Cys-protein G. In the sandwich immunoassay, the control of the orientation of Cys-protein G led to 10-fold higher detection capability for rIL-2 compared with the randomly oriented protein G. The synergistic advantage of the unidirectional orientation and homogeneous lateral spacing of Cys-protein Gs on the dendron-coated surface can be applied to the development of more sensitive and reproducible antibody microarrays.

Graphical abstract: Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2011
Accepted
01 Mar 2012
First published
05 Apr 2012

Analyst, 2012,137, 2421-2430

Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay

E. Kim, C. Shim, J. W. Lee, J. W. Park and K. Y. Choi, Analyst, 2012, 137, 2421 DOI: 10.1039/C2AN16137K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements