Issue 6, 2012

Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin

Abstract

Serotonin and dopamine are crucial regulators of signalling in the peripheral and central nervous systems. We present an ex-vivo, isocratic chromatographic method that allows for the measurement of tyrosine, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), tryptophan, 5-hydroxytryptophan (5-HTP), serotonin and 5-hydroxy-3-indoleacetic acid (5-HIAA) in a model central nervous (CNS) system, to study the role of key enzymes involved in the synthesis and metabolism of serotonin and dopamine. By utilising a sample splitting technique, we could test a single CNS sample at multiple time points under various pharmacological treatments. In, addition, we were able to conduct this assay by utilising the endogenous biochemical components of the CNS to study the synthesis and metabolism of serotonin and dopamine, negating the requirement of additional enzyme activators or stabilisers in the biological matrix. Finally we utilised NSD-1015, an aromatic amino acid decarboxylase enzyme inhibitor used to study the synthesis of dopamine and serotonin to monitor alterations in levels of key neurochemicals. 3-hydroxybenzylhydrazine dihydrochloride (NSD-1015) was able to reduce levels of serotonin and dopamine, whilst elevating precursors L-DOPA and 5-HTP.

Graphical abstract: Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2011
Accepted
24 Jan 2012
First published
31 Jan 2012

Analyst, 2012,137, 1409-1415

Chromatographic assay to study the activity of multiple enzymes involved in the synthesis and metabolism of dopamine and serotonin

L. D. Morgan, H. Baker, M. S. Yeoman and B. A. Patel, Analyst, 2012, 137, 1409 DOI: 10.1039/C2AN16227J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements