Issue 1, 2012

Employment of multivariate curve resolution to liquid chromatography coupled with NMR

Abstract

NMR spectral data from aliquots at different retention times of an ordinary liquid chromatographic column were resolved into individual concentration and spectral profiles using multivariate curve resolution based on alternative least squares (MCR-ALS) and canonical correlation analysis (CCA). Samples were a number of the reaction product mixtures obtained at different experimental conditions, based on a simple experimental design, and for synthesis of α-amido phosphonate. NMR data from different experiments were augmented and aligned using correlation optimized warping (COW) procedure. Orthogonal projection approach (OPA) was applied to make initial estimates for MCR-ALS. CCA was implemented in three steps; the first step was determining the regions of NMR peak clusters, the second was the rank analysis of each peak cluster, and the third was assignment of peak clusters to different compounds using CCA. Employing both resolution methods, the NMR data from liquid chromatographic column was successfully resolved to spectral and concentration profiles of pure components. From the resolved concentration profiles the optimum experimental conditions with maximum yield of reaction were obtained as air atmosphere and at 25 °C. Due to the fact that there is rotational ambiguity in the obtained results of MCR-ALS, the resolved concentration profiles from the two methods were different. However, both methods resulted in the same optimal experimental conditions.

Graphical abstract: Employment of multivariate curve resolution to liquid chromatography coupled with NMR

Article information

Article type
Paper
Submitted
03 Sep 2011
Accepted
17 Oct 2011
First published
29 Nov 2011

Anal. Methods, 2012,4, 162-170

Employment of multivariate curve resolution to liquid chromatography coupled with NMR

M. Kompany-Zareh, S. Gholami and B. Kaboudin, Anal. Methods, 2012, 4, 162 DOI: 10.1039/C1AY05555K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements