Issue 5, 2012

Application of an integrated LC-UV-MS-NMR platform to the identification of secondary metabolites from cell cultures: benzophenanthridine alkaloids from elicited Eschscholzia californica (california poppy) cell cultures

Abstract

Plant cell and tissue cultures are a scalable and controllable alternative to whole plants for obtaining natural products of medical relevance. Cultures can be optimized for high yields of desired metabolites using rapid profiling assays such as HPLC. We describe an approach to establishing a rapid assay for profiling cell culture expression systems using a novel microscale LC-UV-MS-NMR platform, designed to acquire both MS and NMR each at their optimal sensitivity, by using nanosplitter MS from 4 mm analytical HPLC columns, and offline microdroplet NMR. The approach is demonstrated in the analysis of elicited Eschscholzia californica cell cultures induced with purified yeast extract to produce benzophenanthridine alkaloids. Preliminary HPLC-UV provides an overview of the changes in the production of alkaloids with time after elicitation. At the time point corresponding to the production of the most alkaloids, the integrated LC-MS-microcoil NMR platform is used for structural identification of extracted alkaloids. Eight benzophenanthridine alkaloids were identified at the sub-microgram level. This paper demonstrates the utility of the nanosplitter LC-MS/microdroplet NMR platform when establishing cell culture expression systems.

Graphical abstract: Application of an integrated LC-UV-MS-NMR platform to the identification of secondary metabolites from cell cultures: benzophenanthridine alkaloids from elicited Eschscholzia californica (california poppy) cell cultures

Supplementary files

Article information

Article type
Paper
Submitted
19 Nov 2011
Accepted
28 Mar 2012
First published
12 Apr 2012

Anal. Methods, 2012,4, 1315-1325

Application of an integrated LC-UV-MS-NMR platform to the identification of secondary metabolites from cell cultures: benzophenanthridine alkaloids from elicited Eschscholzia californica (california poppy) cell cultures

R. M. Gathungu, J. T. Oldham, S. S. Bird, C. W. T. Lee-Parsons, P. Vouros and R. Kautz, Anal. Methods, 2012, 4, 1315 DOI: 10.1039/C2AY05803K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements