A microporous–mesoporous carbon with graphitic structure was developed as a matrix for the sulfur cathode of a Li–S cell using a mixed carbonate electrolyte. Sulfur was selectively introduced into the carbon micropores by a melt adsorption–solvent extraction strategy. The micropores act as solvent-restricted reactors for sulfur lithiation that promise long cycle stability. The mesopores remain unfilled and provide an ion migration pathway, while the graphitic structure contributes significantly to low-resistance electron transfer. The selective distribution of sulfur in micropores was characterized by X-ray photoelectron spectroscopy (XPS), nitrogen cryosorption analysis, transmission electron microscopy (TEM), X-ray powder diffraction and Raman spectroscopy. The high-rate stable lithiation–delithiation of the carbon–sulfur cathode was evaluated using galvanostatic charge–discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode is able to operate reversibly over 800 cycles with a 1.8 C discharge–recharge rate. This integration of a micropore reactor, a mesopore ion reservoir, and a graphitic electron conductor represents a generalized strategy to be adopted in research on advanced sulfur cathodes.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?