Issue 42, 2012

Pulsed electrically detected magnetic resonance for thin film silicon and organic solar cells

Abstract

In thin film solar cells based on non-crystalline thin film silicon or organic semiconductors structural disorder leads to localized states that induce device limiting charge recombination and trapping. Both processes frequently involve paramagnetic states and become spin-dependent. In the present perspectives article we report on advanced pulsed electrically detected magnetic resonance (pEDMR) experiments for the study of spin dependent transport processes in fully processed thin film solar cells. We reflect on recent advances in pEDMR spectroscopy and demonstrate its capabilities on two different state of the art thin film solar cell concepts based on microcrystalline silicon and organic MEH-PPV:PCBM blends, recently studied at HZB. Benefiting from the increased capabilities of novel pEDMR detection schemes we were able to ascertain spin-dependent transport processes and microscopically identify paramagnetic states and their role in the charge collection mechanism of solar cells.

Graphical abstract: Pulsed electrically detected magnetic resonance for thin film silicon and organic solar cells

Article information

Article type
Perspective
Submitted
19 Apr 2012
Accepted
08 Aug 2012
First published
08 Aug 2012

Phys. Chem. Chem. Phys., 2012,14, 14418-14438

Pulsed electrically detected magnetic resonance for thin film silicon and organic solar cells

A. Schnegg, J. Behrends, M. Fehr and K. Lips, Phys. Chem. Chem. Phys., 2012, 14, 14418 DOI: 10.1039/C2CP41258F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements