Issue 3, 2012

Ligand design for functional metal–organic frameworks

Abstract

Metal–organic frameworks (MOFs), also known as coordination polymers, are formed by the self-assembly of metallic centres and bridging organic linkers. In this critical review, we review the key advances in the field and discuss the relationship between the nature and structure of specifically designed organic linkers and the properties of the products. Practical examples demonstrate that the physical and chemical properties of the linkers play a decisive role in the properties of novel functional MOFs. We focus on target materials suitable for the storage of hydrogen and methane, sequestration of carbon dioxide, gas separation, heterogeneous catalysis and as magnetic and photoluminescent materials capable of both metal- and ligand-centred emission, ion exchangers and molecular sieves. The advantages of highly active discrete complexes as metal-bearing ligands in the construction of MOFs are also briefly reviewed (128 references).

Graphical abstract: Ligand design for functional metal–organic frameworks

Supplementary files

Article information

Article type
Critical Review
Submitted
25 Feb 2011
First published
15 Sep 2011

Chem. Soc. Rev., 2012,41, 1088-1110

Ligand design for functional metal–organic frameworks

F. A. Almeida Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tomé, J. A. S. Cavaleiro and J. Rocha, Chem. Soc. Rev., 2012, 41, 1088 DOI: 10.1039/C1CS15055C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements