Issue 14, 2012

Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks

Abstract

A new flexible ultramicroporous solid, La(H5DTMP)·7H2O (1), has been crystallized at room temperature using the tetraphosphonic acid H8DTMP, hexamethylenediamine-N,N,N′,N′-tetrakis(methylenephosphonic acid). Its crystal structure, solved by synchrotron powder X-ray diffraction, is characterised by a 3D pillared open-framework containing 1D channels filled with water. Upon dehydration, a new related crystalline phase, La(H5DTMP) (2) is formed. Partial rehydration of 2 led to La(H5DTMP)·2H2O (3). These new phases contain highly corrugated layers showing different degrees of conformational flexibility of the long organic chain. The combination of the structural study and the gas adsorption characterization (N2 and CO2) suggests an ultramicroporous flexible framework. NO isotherms are indicative of a strong irreversible adsorption of NO within the pores. Impedance data indicates that 1 is a proton-conductor with a conductivity of 8 × 10−3 S cm−1 at 297 K and 98% of relative humidity, and an activation energy of 0.25 eV.

Graphical abstract: Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2011
Accepted
13 Dec 2011
First published
25 Jan 2012

Dalton Trans., 2012,41, 4045-4051

Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks

R. M. P. Colodrero, P. Olivera-Pastor, E. R. Losilla, M. A. G. Aranda, L. Leon-Reina, M. Papadaki, A. C. McKinlay, R. E. Morris, K. D. Demadis and A. Cabeza, Dalton Trans., 2012, 41, 4045 DOI: 10.1039/C2DT11992G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements