Issue 41, 2012

1,1’-Bis(diphenylphosphino)ferrocene in functional molecular materials

Abstract

The bidentate ligand 1,1’-bis(diphenylphosphino)ferrocene (dppf) is a widely used component in catalytic systems and its role in this capacity has been expertly reviewed elsewhere. The focus of this Perspective is the increasing use of dppf in the synthesis and matrix of 21st century materials. The ferrocene core imparts fine control to catalytic C–C and C–X coupling reactions used to manufacture a range of functional macromolecules from tailored dyes and OLED components to precisely engineered conducting polymers and thermoplastics. This ligand's limited flexibility resembles a ball and socket joint with simultaneous rotation and constrained perpendicular freedom. This uniquely restricted range of movement stabilizes a diverse array of ground and transition states for these important transition metal catalysed coupling reactions. It may also contribute desirable mechanical or electronic functionality as a bridging or chelating component in a coordination array, metallocycle or larger supramolecular assembly. The ferrocene offers steric bulk and crystallinity to these materials aiding chemical stability and ease of handing. It's oxidizability assists characterization and may be tailored to provide or complement photo- or electroactivity. Dppf containing materials have been designed with diverse functions from cooperative luminescence to host–guest complexation. It is likely that this ubiquitous lab companion will increasingly find its way into the fabric or processing of future functional molecular materials.

Graphical abstract: 1,1’-Bis(diphenylphosphino)ferrocene in functional molecular materials

Article information

Article type
Perspective
Submitted
13 Jun 2012
Accepted
27 Jul 2012
First published
29 Aug 2012

Dalton Trans., 2012,41, 12655-12665

1,1’-Bis(diphenylphosphino)ferrocene in functional molecular materials

D. J. Young, S. W. Chien and T. S. A. Hor, Dalton Trans., 2012, 41, 12655 DOI: 10.1039/C2DT31271A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements