Issue 48, 2012

An interplay between the spin density distribution and magnetic superexchange interactions: a case study of mononuclear [nBu4N]2[Cu(opooMe)] and novel asymmetric trinuclear [Cu3(opooMe)(pmdta)2](NO3)2·3MeCN

Abstract

Treatment of the diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2, 1) with 5/6 equivalent of MeNH2 in abs. EtOH results in the exclusive formation of the ethyl ester of o-phenylene(N′-methyl oxamide)(oxamic acid) (opooH3EtMe, 2) in ca. 50% yield. Treatment of 2 with four equivalents of [Me4N]OH followed by the addition of Cu(ClO4)2·6H2O gave [Me4N]2[Cu(opooMe)]·H2O (3A) in ca. 80% yield. As 3A appears to be a hygroscopic solid, the related [nBu4N]+ salts [nBu4N]2[M(opooMe)]·H2O (M = Cu (3B), Ni (4)) have been synthesized. By addition of two equivalents of [Cu(pmdta)(NO3)2] to a MeCN solution of 3B the novel asymmetric trinuclear complex [Cu3(opooMe)(pmdta)2](NO3)2 (5) could be obtained in ca. 90% yield. Compounds 2, 3A, 3B, 4 and 5 have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of 3A in the form of [Me4N]2[Cu(opooMe)]·MeOH (3A′), 3B in the form of [nBu4N]2[Cu(opooMe)] (3B′), 4 in the form of [nBu4N]2[Ni(opooMe)]·1.25H2O (4′) and 5 in the form of [Cu3(opooMe)(pmdta)2] (NO3)2·3MeCN (5′), respectively, have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted 3B (1%) in the host lattice of 4 (99%) in the form of single crystals have been made available, allowing single crystal EPR studies to extract all components of the g-factor and the tensors of onsite CuA and transferred NA hyperfine interaction. Out of these studies the spin density distribution of the [Cu(opooMe)]2− complex fragment could be determined. The magnetic properties of 5 were studied by susceptibility measurements versus temperature. An intramolecular J parameter of −65 cm−1 has been obtained, unexpectedly, as 5 should possess two different J values due to its two different spacers between the adjacent CuII ions, namely an oxamate (C2NO3) and an oxamidate (C2N2O2) fragment. This unexpected result is explained by a summarizing discussion of the experimentally obtained EPR results (spin density distribution) of 3B, the geometries of the terminal [Cu(pmdta)]2+ fragments of 5 determined by X-ray crystallographic studies and accompanying quantum chemical calculations of the spin density distribution of the mononuclear [Cu(opooMe)]2− and of the magnetic exchange interactions of trinuclear [Cu3(opooMe)(pmdta)2]2+ complex fragments.

Graphical abstract: An interplay between the spin density distribution and magnetic superexchange interactions: a case study of mononuclear [nBu4N]2[Cu(opooMe)] and novel asymmetric trinuclear [Cu3(opooMe)(pmdta)2](NO3)2·3MeCN

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2012
Accepted
26 Sep 2012
First published
03 Oct 2012

Dalton Trans., 2012,41, 14657-14670

An interplay between the spin density distribution and magnetic superexchange interactions: a case study of mononuclear [nBu4N]2[Cu(opooMe)] and novel asymmetric trinuclear [Cu3(opooMe)(pmdta)2](NO3)2·3MeCN

M. A. Abdulmalic, A. Aliabadi, A. Petr, Y. Krupskaya, V. Kataev, B. Büchner, T. Hahn, J. Kortus and T. Rüffer, Dalton Trans., 2012, 41, 14657 DOI: 10.1039/C2DT31802D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements