Issue 1, 2012

Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability

Abstract

Electroactive biofilms were formed from garden compost leachate on platinum wires under constant polarisation at −0.2 V vs.SCE and temperature controlled at 40 °C. The oxidation of 10 mM acetate gave maximum current density of 7 A m−2 with the electrodes of largest diameters (500 and 1000 μm). The smaller diameter wires exhibited an ultra-microelectrode (UME) effect, which increased the maximum current density up to 66 A m−2 with the 25 μm diameter electrode. SEM imaging showed biofilms around 75 μm thick on the 50 μm diameter wire, while they were only 25 μm thick on the 500 μm diameter electrode. Low scan cyclic voltammetry (CV) curves were similar to those already reported for biofilms formed with pure cultures of G. sulfurreducens. Concentrations of the redox molecules contained in the biofilms, which were derived from the non-turnover CVs, were around 0.4 to 0.6 mM, which was close to the value of 1 mM extracted from literature data for G. sulfurreducens biofilms. A numerical model was designed, which demonstrated that the microbial anodes were not controlled here by microbial kinetics. Introducing the concept of average electron transport length made the model well fitted with the experimental results, which indicates rate control by electron transport through the biofilm matrix. According to this model, the UME effect improved the electron transport network in the biofilm, which allowed the biofilm to grow to greater thickness.

Graphical abstract: Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability

Article information

Article type
Paper
Submitted
14 Apr 2011
Accepted
01 Jul 2011
First published
02 Aug 2011

Energy Environ. Sci., 2012,5, 5287-5296

Ultra microelectrodes increase the current density provided by electroactive biofilms by improving their electron transport ability

D. Pocaznoi, B. Erable, M. Delia and A. Bergel, Energy Environ. Sci., 2012, 5, 5287 DOI: 10.1039/C1EE01469B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements