Issue 5, 2012

Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency

Abstract

A low band gap liquid-processed Cu2ZnSn(Se1−xSx)4 (CZTSSe) kesterite solar cell with x ≈ 0.03 is prepared from earth abundant metals, yielding 10.1% power conversion efficiency. This champion cell shows a band gap of 1.04 eV, higher minority-carrier lifetime, lower series resistance and lower Voc deficit compared to our previously reported higher band gap (Eg = 1.15 eV; x ≈ 0.4) cell with similar record efficiency. The ability to vary the CZTSSe band gap using sulfur content (i.e., varying x) facilitates the examination of factors limiting performance in the current generation of CZTSSe devices, as part of the thrust to achieve operational parity with CdTe and Cu(In,Ga)(S,Se)2 (CIGSSe) analogs.

Graphical abstract: Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency

Article information

Article type
Paper
Submitted
07 Jan 2012
Accepted
23 Feb 2012
First published
24 Feb 2012

Energy Environ. Sci., 2012,5, 7060-7065

Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency

S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov and D. B. Mitzi, Energy Environ. Sci., 2012, 5, 7060 DOI: 10.1039/C2EE00056C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements