Issue 5, 2012

An all carbon counter electrode for dye sensitized solar cells

Abstract

This article describes the design and operation of a dye sensitized solar cell with an all carbon counter electrode and plastic electrolyte. For the construction of the counter electrode, the conventional thin platinum catalytic layer was replaced by a novel large-effective-surface-area polyaromatic hydrocarbon (LPAH) film, and the fluorine doped tin oxide substrate was replaced by a graphite film. In this way the internal resistance of the cell was substantially reduced and the cell efficiency can reach nearly 9% using the masked frame measurement technique. To achieve such an efficiency, a series of experiments was carried out to assure that the LPAH layer possesses superior catalytic activity and energy efficiency compared to the commonly used carbon black. To this end a unique LPAH layer synthesis technique was developed. It involved the production of LPAH from a hydrogen arc along with the use of an amphiphilic triblock copolymer (P123) to improve the suspendability of LPAH to form a homogeneous catalytic layer. This layer was then attached to a graphite film to form the counter electrode for the dye sensitized solar cell. Details of the properties of the LAPH and the newly designed solar cell are reported herein.

Graphical abstract: An all carbon counter electrode for dye sensitized solar cells

Article information

Article type
Paper
Submitted
21 Oct 2011
Accepted
08 Feb 2012
First published
15 Mar 2012

Energy Environ. Sci., 2012,5, 6941-6952

An all carbon counter electrode for dye sensitized solar cells

B. Lee, D. B. Buchholz and R. P. H. Chang, Energy Environ. Sci., 2012, 5, 6941 DOI: 10.1039/C2EE02950B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements