Issue 5, 2012

A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case

Abstract

A facile approach to the surface modification of spinel LiNi0.5Mn1.5O4 (LNMO) cathode active materials for high-voltage lithium ion batteries is demonstrated. This strategy is based on nanoarchitectured polyimide (PI) gel polymer electrolyte (GPE) coating. The PI coating layer successfully wrapped a large area of the LNMO surface via thermal imidization of 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid. In comparison to conventional metal oxide-based coatings, distinctive features of the unusual PI wrapping layer are the highly continuous surface coverage with nanometre thickness (∼10 nm) and the provision of facile ion transport. The nanostructure-tuned PI wrapping layer served as an ion-conductive protection skin to suppress the undesired interfacial side reactions, effectively preventing the direct exposure of the LNMO surface to liquid electrolyte. As a result, the PI wrapping layer played a crucial role in improving the high-voltage cell performance and alleviating the interfacial exothermic reaction between charged LNMO and liquid electrolyte. Notably, the superior cycle performance (at 55 °C) of the PI-wrapped LNMO (PI-LNMO) was elucidated in great detail by quantitatively analyzing manganese (Mn) dissolution, cell impedance, and chemical composition (specifically, lithium fluoride (LiF)) of byproducts formed on the LNMO surface.

Graphical abstract: A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2011
Accepted
06 Mar 2012
First published
04 Apr 2012

Energy Environ. Sci., 2012,5, 7124-7131

A polymer electrolyte-skinned active material strategy toward high-voltage lithium ion batteries: a polyimide-coated LiNi0.5Mn1.5O4 spinel cathode material case

J. Cho, J. Park, M. Lee, H. Song and S. Lee, Energy Environ. Sci., 2012, 5, 7124 DOI: 10.1039/C2EE03389E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements