Issue 6, 2012

Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells

Abstract

The recent development of inexpensive catalysts for the oxygen evolution reaction has suggested that efficient photoelectrochemical cells (PECs) might be constructed from terrestrially abundant materials. Because these catalysts operate in aqueous buffer solutions at neutral to slightly basic pH, it is important to consider whether electrolytic cells can have low series loss under these conditions. Water-splitting or fuel-forming PECs will likely require porous separators or electrolyte membranes to separate the cathode products from oxygen produced at the anode. For this reason we analyze the individual potential losses in electrolytic systems of buffer solutions and commercially available anion- and cation-exchange membranes. Potentiometric analysis and pH measurements were employed to measure the potential losses associated with solution resistance, membrane resistance, and pH gradient formation at the current density (25 mA cm−2) expected for efficient PECs. The membrane pH gradient is the most problematic source of loss in these systems, but monoprotic buffers can minimize the pH gradient by diffusion of the neutral acidic or basic form of the buffer across the membrane. These results suggest that water-splitting PECs can be viable with properly chosen membrane–buffer combinations.

Graphical abstract: Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2011
Accepted
02 Apr 2012
First published
05 Apr 2012

Energy Environ. Sci., 2012,5, 7582-7589

Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin and T. E. Mallouk, Energy Environ. Sci., 2012, 5, 7582 DOI: 10.1039/C2EE03422K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements