This study quantifies worldwide health effects of the Fukushima Daiichi nuclear accident on 11 March 2011. Effects are quantified with a 3-D global atmospheric model driven by emission estimates and evaluated against daily worldwide Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) measurements and observed deposition rates. Inhalation exposure, ground-level external exposure, and atmospheric external exposure pathways of radioactive iodine-131, cesium-137, and cesium-134 released from Fukushima are accounted for using a linear no-threshold (LNT) model of human exposure. Exposure due to ingestion of contaminated food and water is estimated by extrapolation. We estimate an additional 130 (15–1100) cancer-related mortalities and 180 (24–1800) cancer-related morbidities incorporating uncertainties associated with the exposure–dose and dose–response models used in the study. We also discuss the LNT model's uncertainty at low doses. Sensitivities to emission rates, gas to particulate I-131 partitioning, and the mandatory evacuation radius around the plant are also explored, and may increase upper bound mortalities and morbidities in the ranges above to 1300 and 2500, respectively. Radiation exposure to workers at the plant is projected to result in 2 to 12 morbidities. An additional ∼600 mortalities have been reported due to non-radiological causes such as mandatory evacuations. Lastly, a hypothetical accident at the Diablo Canyon Power Plant in California, USA with identical emissions to Fukushima was studied to analyze the influence of location and seasonality on the impact of a nuclear accident. This hypothetical accident may cause ∼25% more mortalities than Fukushima despite California having one fourth the local population density due to differing meteorological conditions.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?