Issue 9, 2012

A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes

Abstract

One of the most critical aspects in the preparation of single-walled carbon nanotubes (SWCNTs)/conducting polymer hybrid electrodes is to improve the energy density without seriously deteriorating their high power capability. Here, we report a “skeleton/skin” strategy for the preparation of free-standing, thin and flexible SWCNT/polyaniline (PANI) hybrid films by a simple in situ electrochemical polymerization method using directly grown SWCNT films with a continuous reticulate structure as template. In situ electrochemical polymerization can achieve effective deposition of PANI onto the surface of SWCNT bundles in the films and control the morphology and microstructure of the SWCNT/PANI hybrid films. In a SWCNT/PANI hybrid film, the directly grown SWCNT film with continuous reticulate architecture acts as the skeleton and PANI layers act as the skin. This unique continuous “skeleton/skin” structure ensures that these hybrid films have much higher conductivity compared to SWCNT/PANI composite films based on post-deposition SWCNT films. Flexible supercapacitors have been fabricated using the SWCNT/PANI hybrid films as both electrodes and charge collectors without metallic current collectors. High energy and power densities (131 W h kg−1 and 62.5 kW kg−1, respectively) have been achieved for the optimized assembly. The high electrical conductivity and flexibility, in combination with continuous porous architecture, suggests that the as-prepared ultrathin free-standing SWCNT/PANI hybrid films have significant potential as promising electrode materials for thin, lightweight and flexible energy storage devices with high performance.

Graphical abstract: A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes

Article information

Article type
Paper
Submitted
25 Apr 2012
Accepted
30 Jul 2012
First published
31 Jul 2012

Energy Environ. Sci., 2012,5, 8726-8733

A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes

Z. Niu, P. Luan, Q. Shao, H. Dong, J. Li, J. Chen, D. Zhao, L. Cai, W. Zhou, X. Chen and S. Xie, Energy Environ. Sci., 2012, 5, 8726 DOI: 10.1039/C2EE22042C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements