Issue 9, 2012

High electrode activity of nanostructured, columnar ceria films for solid oxidefuel cells

Abstract

Highly porous oxide structures are of significant importance for a wide variety of applications in fuel cells, chemical sensors, and catalysis, due to their high surface-to-volume ratio, gas permeability, and possible unique chemical or catalytic properties. Here we fabricated and characterized Sm0.2Ce0.8O1.9−δ films with highly porous and vertically oriented morphology as a high performance solid oxide fuel cell anode as well as a model system for exploring the impact of electrode architecture on the electrochemical reaction impedance for hydrogen oxidation. Films are grown on single crystal YSZ substrates by means of pulsed laser deposition. Resulting structures are examined by SEM and BET, and are robust up to post-deposition processing temperatures as high as 900 °C. Electrochemical properties are investigated by impedance spectroscopy under H2H2O–Ar atmospheres in the temperature regime 450–650 °C. Quantitative connections between architecture and reaction impedance and the role of ceria nanostructuring for achieving enhanced electrode activity are presented. At 650 °C, pH2O = 0.02 atm, and pH2 = 0.98 atm, the interfacial reaction resistance attains an unprecedented value of 0.21 to 0.23 Ω cm2 for porous films 4.40 μm in thickness.

Graphical abstract: High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells

Article information

Article type
Paper
Submitted
04 May 2012
Accepted
20 Jul 2012
First published
20 Jul 2012

Energy Environ. Sci., 2012,5, 8682-8689

High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells

W. Jung, J. O. Dereux, W. C. Chueh, Y. Hao and S. M. Haile, Energy Environ. Sci., 2012, 5, 8682 DOI: 10.1039/C2EE22151A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements