Issue 11, 2012

Nickel(ii) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO

Abstract

A series of molecular materials that are structurally similar to the NiII macrocycle [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been used as electrocatalysts for the reduction of CO2 at a mercury pool working electrode in aqueous solution. At pH 5, with an applied potential of −0.96 V vs. NHE (overpotential of −0.55 V), the complexes are highly efficient, having both high rate constants and Faradaic efficiencies (F.E.s) for the selective reduction of CO2 to CO. When the pH is below the pKa (pH < 2) of the Ni(H) species (pKas: 0.5–2), the F.E.s are still high but product selectivity changes to yield predominantly H2 from the reduction of water. At least two of the complexes investigated are better electrocatalysts than [Ni(cyclam)]2+, probably due to: (i) surface geometries that are suitable for adsorption onto the mercury electrode surface, and (ii) electronic effects of methyl groups or cyclohexane rings on the cyclam backbone. Mechanistic studies by pulse radiolysis show evidence of Ni(CO2) adducts for two of the catalysts, with KCO2 ∼ 10 M−1 for the reaction of NiI with CO2 in aqueous solution.

Graphical abstract: Nickel(ii) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2012
Accepted
07 Aug 2012
First published
08 Aug 2012

Energy Environ. Sci., 2012,5, 9502-9510

Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO

J. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T. Muckerman and E. Fujita, Energy Environ. Sci., 2012, 5, 9502 DOI: 10.1039/C2EE22528J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements