Volume 154, 2012

Ionic liquids studied across different scales: A computational perspective

Abstract

For theoreticians, ionic liquids represent a major challenge. This is due to the fact that intermolecular interactions are particularly strong because of ionic liquids' ionicity. This, in turn, causes a subtle interplay between different scales which is encoded in the measured macro- and mesoscopic properties and also in the molecular electrostatic characteristics. Therefore, force fields have to describe the microscopic processes correctly in order to reproduce macroscopic properties accurately over a large range of state variables. Herein, imidazolium-based ionic liquids were studied at different scales, going from the detailed quantum electronic scale to the classical atomistic scale. It is indicated how the information gained at each level could be used for the other scales. In particular, the issue of deriving suitable partial charges for use in classical force fields is addressed. The Blöchl method was employed to generate partial charges reproducing the multipole distribution accurately for bulk systems. This led naturally to absolute ionic charges of less than |1 e|, i.e. charge scaling. So, the monopole structure of the herein introduced force field mimics the quantum chemical behaviour observed in the liquid phase. This led to a substantial improvement in the description of dynamical properties of immediate experimental interest, such as electric conductivity. For further insight, the electric dipole moment of the ions was taken as physical indicator of their electronic structure. The electric dipole moment was found to fluctuate strongly and to depend on polarisation. Hence, our scale-combined study offers a gateway to rational design of models, based on the relevant underlying physics rather than on mere numerical parameterisation, and thereby to (possibly) more direct physical interpretation of experimental results.

Article information

Article type
Paper
Submitted
30 Mar 2011
Accepted
04 Jul 2011
First published
14 Jul 2011

Faraday Discuss., 2012,154, 111-132

Ionic liquids studied across different scales: A computational perspective

K. Wendler, F. Dommert, Y. Y. Zhao, R. Berger, C. Holm and L. Delle Site, Faraday Discuss., 2012, 154, 111 DOI: 10.1039/C1FD00051A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements