Issue 6, 2012

Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose

Abstract

We report the activity and the selectivity of several heterogeneous nickel catalysts for the supercritical water gasification (SCWG) of biomass. The effects of catalyst support on the carbon conversion and hydrogen selectivity were demonstrated using 44 different materials, covering a wide range of chemical and physical properties. At 5% nickel loading, α-Al2O3, carbon nanotubes (CNTs), and MgO supports resulted in high carbon conversions, while SiO2, Y2O3, hydrotalcite, yttria-stabilized zirconia (YSZ), and TiO2 showed modest activities. Utilization of different γ-Al2O3 supports resulted in a wide range of catalytic activities from almost inactive to highly active. Other catalyst carriers such as zeolites, molecular sieves, CeO2, and ZrO2 had insignificant activity under the conditions tested (i.e., 380 °C, 2 wt% feed). Aside from the catalytic activity, the stable metal oxide supports under the experimental conditions of this work, as identified by XRD, were α-Al2O3, boehmite, YSZ, and TiO2. Given the high hydrogen yield and carbon conversion as well as its superior stability in supercritical water, α-Al2O3 was chosen for a more elaborate investigation. It was found that when using the same amount of nickel, the methane yield significantly decreased by increasing the nickel to support ratio whereas the carbon conversion was only slightly affected. At a given nickel to support ratio, a threefold increase in methane yield was observed by increasing the temperature from 350 to 410 °C. The catalyst activation conditions (e.g., calcination and reduction) had a small impact on its catalytic performance. The catalyst activity increased with the addition of alkali promoters (i.e., K, Na, Cs) and decreased with the addition of tin. The highest catalytic activity was obtained with the addition of 0.5% potassium. In summary, nickel loading and alkali promoters improved the hydrogen selectivity and the carbon conversion of the Ni/α-Al2O3 catalyst.

Graphical abstract: Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose

Article information

Article type
Paper
Submitted
02 Nov 2011
Accepted
29 Mar 2012
First published
30 Apr 2012

Green Chem., 2012,14, 1766-1777

Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose

P. Azadi, E. Afif, F. Azadi and R. Farnood, Green Chem., 2012, 14, 1766 DOI: 10.1039/C2GC16378K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements