Issue 35, 2012

Structural, electronic band transition and optoelectronic properties of delafossite CuGa1−xCrxO2 (0 ≤ x ≤ 1) solid solution films grown by the sol–gel method

Abstract

Pure phase CuGa1−xCrxO2 (0 ≤ x ≤ 1) films were prepared on (001) sapphire substrates by the sol–gel method. The structure, vibration modes, and compositions of the films were analyzed by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the Cr-substituting induced the increase of the film’s roughness, changed the film’s internal structure, and made more crystal defects and grain boundaries. Due to the interatomic potential becoming weaker between Cu and O atoms with increasing the Cu–O bond length, the peak positions of the A1g and Ag phonon modes shifted toward a lower frequency with increasing x. The optical transmittance of the films approached about 60–80% in the visible region and the values of the direct band gap linearly decrease from 3.56 to 3.09 eV with increasing x. The Cr-introduction effects on the electronic band transition have been investigated in detail. The new energy state located at 0.17 eV above the top of the valence band is observed in the CuGa0.8Cr0.2O2 film, which can be derived from the defect energy level. It can induce the increment of the hole in the valence band, contribute to the electrical conductivity, and lower the thermal activation energy. Moreover, the CuGa0.8Cr0.2O2 film is found to be of the larger electrical conductivity of 0.071 S cm−1 at room temperature, which shows the promising application values, as compared to other CuGa1−xCrxO2 films.

Graphical abstract: Structural, electronic band transition and optoelectronic properties of delafossite CuGa1−xCrxO2 (0 ≤ x ≤ 1) solid solution films grown by the sol–gel method

Article information

Article type
Paper
Submitted
13 May 2012
Accepted
19 Jul 2012
First published
20 Jul 2012

J. Mater. Chem., 2012,22, 18463-18470

Structural, electronic band transition and optoelectronic properties of delafossite CuGa1−xCrxO2 (0 ≤ x ≤ 1) solid solution films grown by the sol–gel method

M. Han, K. Jiang, J. Zhang, W. Yu, Y. Li, Z. Hu and J. Chu, J. Mater. Chem., 2012, 22, 18463 DOI: 10.1039/C2JM33027J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements