“Click chemistry” as a versatile route to synthesize and modulate bent-core liquid crystalline materials†
Abstract
Three series of bent-shaped compounds containing the 1,2,3-triazole ring in the central core of the molecule have been prepared by the most extended “click chemistry” reaction, the copper-catalyzed azide-alkyne cycloaddition (CuAAC). This research demonstrates the versatility of this synthetic approach with the aim of achieving innovative compact supramolecular organizations. The appropriate combination of the 1,2,3-triazole synthon linked either to a methylene unit (series M) or to a methylenoxycarbonyl block (series MC) has allowed the induction of a variety of non-classical bent-core liquid crystal phases versus the classic mesophases promoted by 1,4-diphenyl-1,2,3-triazole derivatives (series T). Through a suitable selection of common lateral structures connected by “click chemistry” both the transition temperatures and mesomorphism, ranging from lamellar to columnar or B4-like supramolecular liquid crystalline organizations, can be tuned.