Issue 45, 2012

Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs

Abstract

This paper reports on the diffuse reflection spectra, photoluminescence spectra and chromaticity of ytterbium in CaAlSiN3 at room temperature. It can be excited efficiently over a broad spectral range between 280 and 580 nm and exhibits a single intense red emission at 629 nm with a full width at half maximum of 75 nm due to the electronic transitions from the excited state of 4f135d to the ground state 4f14 of Yb2+. The low energy of Yb2+ emission in CaAlSiN3 can be attributed to the large nephelauxetic effect and crystal field splitting due to the coordination of Yb2+ by nitrogen. This novel developed CaAlSiN3:Yb2+, which is the first Yb2+-activated nitride red-emitting phosphor, has potential applications in spectral conversion materials for warm-white LEDs. The width of the emission band, Stokes shift and thermal quenching mechanism of Yb2+ in CaAlSiN3 and (oxy)nitride-based phosphors are discussed and compared with those of Eu2+.

Graphical abstract: Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs

Article information

Article type
Paper
Submitted
02 Aug 2012
Accepted
27 Sep 2012
First published
27 Sep 2012

J. Mater. Chem., 2012,22, 23871-23876

Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs

Z. Zhang, O. M. ten Kate, A. C. A. Delsing, M. J. H. Stevens, J. Zhao, P. H. L. Notten, P. Dorenbos and H. T. Hintzen, J. Mater. Chem., 2012, 22, 23871 DOI: 10.1039/C2JM35170F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements