Issue 43, 2012

Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal–organic frameworks

Abstract

Solvothermal reaction of Cd2+ ions and a hexavalent carboxylic acid (H6666666L) afforded a Cd(II) metal organic framework (Cd-MOF), namely {[Cd3(L)(H2O)2(DMF)2]·5DMF}n (1). Its structure consists of trinuclear CdII building units, which are further bridged by the carboxylic ligand, resulting in a 4,4-connected topological net (sra). By introducing a rigid N-donor ligand 1,4-bis(1-imidazolyl)benzene (dib), a new Cd-MOF (2) {[Cd3(L)(dib)]·3H2O·5DMA}n was isolated, in which the coordinated sites of solvent molecules in 1 were completely replaced by dib. The resulting trinuclear Cd3 subunits are further bridged into a two-fold interpenetrating network with DMA and water molecules located in the void space. The luminescent properties of the two microporous Cd-MOFs dispersed in different solvents have been investigated systematically, demonstrating unique selectivity for the detection of acetone via a fluorescence quenching mechanism. Their luminescence intensities decreased to 50% at an acetone content of 0.3 vol% and were almost completely quenched at a concentration of 1.0 vol%, thus, they can be considered as excellent potential luminescent probes for the detection of acetone.

Graphical abstract: Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2012
Accepted
12 Sep 2012
First published
13 Sep 2012

J. Mater. Chem., 2012,22, 23201-23209

Highly selective acetone fluorescent sensors based on microporous Cd(II) metal–organic frameworks

F. Yi, W. Yang and Z. Sun, J. Mater. Chem., 2012, 22, 23201 DOI: 10.1039/C2JM35273G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements