Issue 3, 2012

Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages

Abstract

The prospect of novel therapeutic approaches has renewed the current interest in the fusion of rare cells, like stem cells or primary immune cells. While conventional techniques are only capable of mass fusion, lab-on-a-chip systems often still lack an acceptable method for making the cells available after processing. Here, we present a microfluidic approach for electrofusion on the single-cell level that offers high control over the cells both before and after fusion. For cell pairing and fusion, we employed dielectrophoresis and AC voltage pulses, respectively. Each cell has been characterized and selected before they were paired, fused and released from the fluidic system for subsequent analysis and cultivation. The successful experimental evaluation of our system was further corroborated by numerical simulations. We obtained fusion efficiencies of more than 30% for individual pairs of mouse myeloma and B cell blasts and showed the proliferating ability of the hybrid cells 3 d after fusion. Since aggregates of more than two cells can be fused, the technique could also be developed further for generating giant cells for low-noise electrophysiology in the context of semi-automated pharmaceutical screening procedures.

Graphical abstract: Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2011
Accepted
04 Nov 2011
First published
29 Nov 2011

Lab Chip, 2012,12, 443-450

Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages

M. Kirschbaum, C. R. Guernth-Marschner, S. Cherré, A. de Pablo Peña, M. S. Jaeger, R. A. Kroczek, T. Schnelle, T. Mueller and C. Duschl, Lab Chip, 2012, 12, 443 DOI: 10.1039/C1LC20818G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements