Issue 18, 2012

β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid

Abstract

We report a simple and facile approach for the synthesis of β-cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid (β-CD–PTCA–SWCNTs). Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, Raman spectroscopy and electrochemical methods were used to characterize the as-prepared functionalized SWCNTs. Furthermore, the β-CD–PTCA–SWCNTs were applied successfully to detect 9-anthracenecarboxylic acid (9-ACA, one derivative of polycyclic aromatic hydrocarbons) by electrochemical methods. The results show that the oxidation peak current of 9-ACA on β-CD–PTCA–SWCNTs modified glassy carbon (GC) electrode is 4.0 and 31.2 times higher than that at the SWCNTs/GC and bare GC electrodes, respectively. The proposed modified electrode has a linear response range of 2.00 to 140.00 nM with a detection limit of 0.65 nM (S/N = 3) towards 9-ACA, which is due to the synergic effects of the SWCNTs (e.g. their good electrochemical properties and large surface area) and β-CD (e.g. a hydrophilic external surface and a high supramolecular recognition and enrichment capability).

Graphical abstract: β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid

Article information

Article type
Paper
Submitted
04 Jun 2012
Accepted
17 Jul 2012
First published
20 Jul 2012

Nanoscale, 2012,4, 5703-5709

β-Cyclodextrin non-covalently functionalized single-walled carbon nanotubes bridged by 3,4,9,10-perylene tetracarboxylic acid for ultrasensitive electrochemical sensing of 9-anthracenecarboxylic acid

G. Zhu, X. Zhang, P. Gai, X. Zhang and J. Chen, Nanoscale, 2012, 4, 5703 DOI: 10.1039/C2NR31378B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements