Issue 34, 2012

An approach to aliphatic 1,8-stereocontrol: diastereoselective syntheses of (±)-patulolide C and (±)-epipatulolide C

Abstract

The tin(IV) bromide promoted reaction of 7-hydroxy-7-phenylhept-2-enyl(tributyl)stannane 11 with benzaldehyde gave a mixture of the epimeric 1,8-diphenyloct-3-ene-1,8-diols 12 and so indirect methods were developed for aliphatic 1,8-stereocontrol to complete diastereoselective syntheses of (±)-patulolide C 1 and (±)-epipatulolide C 40. (5Z)-3,7-syn-7-(2-Trimethylsilylethoxy)methoxyocta-1,5-dien-3-ol 17 was prepared from the tin(IV) chloride promoted reaction of 4-(2-trimethylsilylethoxy)methoxypent-2-enyl(tributyl)stannane 16 with acrolein (1,5-syn : 1,5-anti = 96 : 4). An Ireland–Claisen rearrangement of the corresponding benzoyloxyacetate 21 with in situ esterification of the resulting acid using trimethylsilyldiazomethane gave methyl (4E,7Z)-2,9-anti-2-benzyloxy-9-(2-trimethylsilylethoxy)methoxydeca-4,7-dienoate 22 together with 10–15% of its 2,9-syn-epimer 26, the 2,9-syn- : 2,9-anti-ratio depending on the conditions used. An 88 : 12 mixture of esters was taken through to the tert-butyldiphenylsilyl ether 38 of (±)-patulolide C 1 together with 6% of its epimer 39, by reduction, a Wittig homologation and deprotection/macrocyclisation. Following separation of the epimeric silyl ethers, deprotection of the major epimer 38 gave (±)-patulolide C 1. The success of 2,3-Wittig rearrangements of allyl ethers prepared from (5Z)-3,7-syn-7-(2-trimethylsilylethoxy)methoxyocta-1,5-dien-3-ol 17 was dependent on the substituents on the allyl ether. Best results were obtained using the pentadienyl ether 56 and the cinnamyl ether 49 that rearranged with >90 : 10 stereoselectivity in favour of (1E,5E,8Z)-3,10-syn-1-phenyl-10-(2-trimethylsilylethoxy)methoxyundeca-1,5,8-trien-3-ol 50. This product was taken through to the separable silyl ethers 38 and 39, ratio 7 : 93 by regioselective epoxidation and alkene reduction using diimide, followed by deoxygenation, ozonolysis, a Wittig homologation and selective deprotection/macrocyclisation. Deprotection of the major epimer 39 gave (±)-epipatulolide C 40.

Graphical abstract: An approach to aliphatic 1,8-stereocontrol: diastereoselective syntheses of (±)-patulolide C and (±)-epipatulolide C

Supplementary files

Article information

Article type
Paper
Submitted
22 May 2012
Accepted
11 Jul 2012
First published
16 Jul 2012

Org. Biomol. Chem., 2012,10, 6995-7014

An approach to aliphatic 1,8-stereocontrol: diastereoselective syntheses of (±)-patulolide C and (±)-epipatulolide C

E. K. Hoegenauer and E. J. Thomas, Org. Biomol. Chem., 2012, 10, 6995 DOI: 10.1039/C2OB25992C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements