Issue 40, 2012

Tandem catalysis in domino olefincross-metathesis/intramolecular oxa-conjugate cyclization: concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives

Abstract

Herein, we describe the concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives based on a domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization (CM/IOCC) reaction. We have found that the domino CM/IOCC of δ-hydroxy olefins with α,β-unsaturated carbonyl compounds (e.g., trans-crotonaldehyde or N-acryloyl-2,5-dimethylpyrrole) could be efficiently achieved in the presence of the second-generation Hoveyda–Grubbs catalyst under elevated temperature conditions, directly affording 2,6-cis-substituted tetrahydropyrans in excellent yields with synthetically useful diastereoselectivity (“auto-tandem catalysis”). In addition, we have found that the domino CM/IOCC of δ-hydroxy olefins with α,β-unsaturated carbonyl compounds could be achieved simply by performing CM in the presence of a Brønsted acid in CH2Cl2 at 25–35 °C, which delivered 2,6-cis-substituted tetrahydropyrans in good yields with excellent diastereoselectivity (“orthogonal-tandem catalysis”). To understand the mechanism of auto-tandem catalysis in the domino CM/IOCC reaction, we have investigated the role of ruthenium hydride complexes in the IOCC of a ζ-hydroxy α,β-unsaturated ketone as a model case.

Graphical abstract: Tandem catalysis in domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization: concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2012
Accepted
08 Aug 2012
First published
09 Aug 2012

Org. Biomol. Chem., 2012,10, 8108-8112

Tandem catalysis in domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization: concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives

H. Fuwa, T. Noguchi, K. Noto and M. Sasaki, Org. Biomol. Chem., 2012, 10, 8108 DOI: 10.1039/C2OB26189H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements