Issue 2, 2012

Synthesis, photophysics, and photovoltaic properties of low-band gap conjugated polymers based on thieno[3,4-c]pyrrole-4,6-dione: a combined experimental and computational study

Abstract

Four novel donor–acceptor (D–A) alternating copolymers were designed and successfully synthesized by the palladium-catalyzed Stille coupling and Suzuki coupling reactions. Utilizing thieno[3,4-c]pyrrole-4,6-dione (TPD) as an acceptor comonomer coupled with dialkoxybithiophene or cyclopentadithiophene as the donor gave polymers PTBT and PTCT. Employing carbazole as the donor and the dithiophene-substituted TPD serving as the acceptor monomers yielded polymers PTC1 and PTC2. Owing to the various strengths of electronic coupling between the donors and the acceptor unit, the band gaps of these polymers can be adjusted from 1.57 to 1.90 eV. Due to the different electron-donor ability of dialkoxybithiophene, cyclopentadithiophene, and carbazole, the HOMO energy levels of polymers were tuned from −5.34 to −5.67 eV, while LUMO levels remained relatively unchanged. The theoretical calculations provided insight to the observed photophysical properties of these polymers. Theoretically estimated band gaps and oxidation potentials correlate well with the experimental data. Carrier mobility and photovoltaic properties of TPD polymers were also investigated for which 1.3% power conversion efficiency was obtained from a blend of PTCT:PC71BM (1 : 2) bulk-heterojunction device.

Graphical abstract: Synthesis, photophysics, and photovoltaic properties of low-band gap conjugated polymers based on thieno[3,4-c]pyrrole-4,6-dione: a combined experimental and computational study

Supplementary files

Article information

Article type
Paper
Submitted
08 Aug 2011
Accepted
02 Oct 2011
First published
15 Nov 2011

RSC Adv., 2012,2, 642-651

Synthesis, photophysics, and photovoltaic properties of low-band gap conjugated polymers based on thieno[3,4-c]pyrrole-4,6-dione: a combined experimental and computational study

Z. Lin, J. Bjorgaard, A. Gul Yavuz, A. Iyer and M. E. Köse, RSC Adv., 2012, 2, 642 DOI: 10.1039/C1RA00570G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements