Cubic and hexagonal ordered mesoporous Eu3+-doped yttrium vanadate (YVO4:Eu3+) have been synthesized successfully through the nanocasting route with a Y(NO3)3/Eu(NO3)3/NH4VO3/HNO3/ethanol system as a guest unit and KIT-6 or SBA-15 silica as the hard template host, and were characterized by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and low-temperature nitrogen adsorption. The prepared YVO4:Eu3+ samples have the characteristic cubic (Ia3d) (or hexagonal (p6mm)) ordered mesostructure based on different hard templates, and possess high surface area, large pore volume and uniform pore size distribution. Photoluminescence (PL) measurement shows that the main red emission peaks of two mesoporous YVO4:Eu3+ samples appear at 618 nm, and different mesostructures lead to different optimum concentrations of Eu3+ dopant and different PL intensities. For the hexagonal mesoporous YVO4:Eu3+, when Eu3+ dopant is 5(mol)% the highest PL intensity can be reached; for the cubic one, optimized Eu3+ amount is 8 mol%. The interaction between Eu3+ ions in hexagonal (p6mm) mesoporous YVO4:Eu3+ is more active than that in cubic (Ia3d) mesoporous YVO4:Eu3+, thus the absorbed energy is dissipated by nonradiation; while the cubic mesoporous YVO4:Eu3+ has more Eu3+ luminescent sites, compared with the hexagonal mesostructure one.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?