Issue 7, 2012

Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS)

Abstract

Extractive electrospray ionization mass spectrometry (EESI-MS) has been shown, in other laboratories, to be a useful technique for the analysis of aerosols from a variety of sources. EESI-MS is applied here, for the first time, to the analysis of secondary organic aerosol (SOA) formed from the reaction of ozone and α-pinene. The results are compared to those obtained using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The SOA was generated in the laboratory and merged with electrospray droplets. The recovered ions were directed towards the inlet of a triple quadrupole mass spectrometer. Through the use of a denuder to remove gas phase compounds, the EESI-MS technique was found to be effective for measuring the major ozonolysis products either in particles alone or in a combination of vapor phase and particulate products. Due to its relatively simple setup and the avoidance of sample collection and work-up, EESI-MS shows promise as an excellent tool for the characterization of atmospherically relevant particles.

Graphical abstract: Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS)

Supplementary files

Article information

Article type
Paper
Submitted
26 Oct 2011
Accepted
15 Jan 2012
First published
13 Feb 2012

RSC Adv., 2012,2, 2930-2938

Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS)

L. A. Doezema, T. Longin, W. Cody, V. Perraud, M. L. Dawson, M. J. Ezell, J. Greaves, K. R. Johnson and B. J. Finlayson-Pitts, RSC Adv., 2012, 2, 2930 DOI: 10.1039/C2RA00961G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements