Issue 7, 2012

Convertible electron transfer pathways of cytochrome c at TiO2 quantum electrode

Abstract

In this work, biofunctional ultrathin TiO2 quantum wires (about 3 nm), self-assembled into flat-cable-like “stacks”, are synthesized by a simple template-free wet chemical method with high uniformity and on a large scale. On the self-assembled TiO2 nanowire (SA-Nw-TiO2) coated electrode, cytochrome c (cyt c) undergoes a fast, reversible (or quasi-reversible) and sensitive electron transfer process that is closely related to the relative ionic strength and the hydrated state of SA-Nw-TiO2 surface. At the suitably hydrated SA-Nw-TiO2 electrode in an optimum bulk ionic environment, electrons are reversibly transferred at the heme edge on the basis of an effective orientation of cyt c. It is interesting to note that in a suitable ionic microenvironment, a convertible electron transfer occurs in the following three steps: electron transfer driven partial unfolding of cyt c, electron transfer, and thermodynamics driven refolding. In addition, the partially unfolded cyt c was proven to exist only in the quasi-reversible electron transfer process, and the multi-step pathway of electron transfer can be converted into the single-step pathway at the fully hydrated SA-Nw-TiO2 electrode.

Graphical abstract: Convertible electron transfer pathways of cytochrome c at TiO2 quantum electrode

Article information

Article type
Paper
Submitted
08 Nov 2011
Accepted
14 Jan 2012
First published
08 Feb 2012

RSC Adv., 2012,2, 2809-2814

Convertible electron transfer pathways of cytochrome c at TiO2 quantum electrode

L. Liu, N. Wang and L. Guo, RSC Adv., 2012, 2, 2809 DOI: 10.1039/C2RA01049F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements